High Precision Gearbox for Servo Motor

Detailed Instruction Manual

- Be sure to read this manual before using the product.
- Provide this manual to the customer who will use the product.
- Be sure to store this manual for reading at any time.

Brother International Corporation

Introduction

Thank you very much for purchasing our product.

Before using the product

- Brother International Corporation accepts no responsibility or liability for any trouble caused by abnormal usage that violates the safety precautions.
- The contents of this manual are subject to change without notice in order to make improvements.
- We have made every possible effort to make the contents of this manual clear. If anything is unclear or hard to understand, please contact us.

Specifications

Check the product specifications on our website.

https://www.BrotherGearmotors.com

Related instruction manuals and software

The instruction manuals and software related to this product are as follows.

The instruction manuals and software can be downloaded from our website or via the QR code.

Title	High Precision Gearbox for Servo Motor Detailed Instruction Manual (This document)				
Summary	oduct and the precautions for safe				
	Website	QR code			
Link to document	https://www.brother-usa.com/servo-gearbox-manual				

Title	High Precision Reducer for Servo Motor Instruction Manual(abridged edition)
Summary	An abridged edition of the instruction manual.
Link to document	Included with the product package

Safety Precautions

- Be sure to read the manual contents carefully in order to understand correct usage of the product before using it.
- The extent of danger/damage expected to occur in the case of improper handling is classified and indicated as levels of "DANGER", "WARNING", and "CAUTION" in this manual.

The definitions and indications are as follows.

Description of symbols

DANGER

Cases where it is expected that the degree of danger is extremely high, such that improper handling could cause a dangerous situation which might lead to death or serious injury.

WARNING Cases where improper handling could cause a dangerous situation which might lead to death or serious injury.

Cases where improper handling could cause a dangerous situation which might lead to a minor or medium degree of injury.

Even items described in "CAUTION" may lead to a serious accident depending on the situation.

Be sure to observe every instruction which deals with important contents.

Description of icons

The icons used in this document stand for the following:

<u>^</u>	Nonspecific hazard warning	0	Nonspecific prohibitions
	Burn injury hazard	(29)	Do not disassemble
4	Electric shock hazard	0	Nonspecific obligations
	Fire hazard		Grounding required

DANGER/WARNING/CAUTION

	DANGER						
General							
1	When using the product for an application that may directly cause injury, such as personnel transportation equipment, provide the equipment with a protective device to ensure safety. Otherwise, there is a risk of accidents with casualties or damage to the equipment due to loss of control or falling.						
1	When using the product for lifting equipment, provide the equipment with a safety device to prevent falling. Otherwise, there is a risk of accidents with casualties or damage to the equipment.						
$\triangle \bigcirc$	Do not use the product in an explosive atmosphere. Otherwise, there is a risk of explosions, ignition, fire, electric shock, injury, or damage to the equipment.						
Transportation							
$\triangle \bigcirc$	Never stand under the product when it is lifted for transportation. Otherwise, there is a risk of injury due to falling.						
Operation							
\triangle	Never approach or touch the product while it is rotating. Otherwise, there is a risk of injury due to entanglement.						

WARNING

General

Transportation, installation, piping, wiring, operation, handling, maintenance, and inspection must be performed by personnel having expertise and skills. Otherwise, there is a risk of explosions, ignition, fire, electric shock, injury, or damage to the equipment,

Do not repair, disassemble, or remodel the product. Otherwise, there is a risk of fire, electric shock, burns, injury, and/or damage to the product.

Operation

When operation has stopped due to errors or activated safeguard functions, do not restart operation until the error causes are identified and countermeasures have been taken. Otherwise, there is a risk of fire, electric shock, burns, injury, and/or damage to the product.

When performing trial operation, fix the product in place and disconnect it from the equipment. Otherwise, there is a risk

CAUTION General Operate the product under the conditions specified in this instruction manual. Otherwise, there is a risk of injury and/or damage to the product. Do not expose the product to strong impacts/shocks. Otherwise, there is a risk of failure of the product and/or injury. Do not use the product under conditions not specified on the nameplate or in the product specifications. Otherwise, there is a risk of fire, electric shock, injury, and/or damage to the equipment. Do not use damaged products. Otherwise, there is a risk of fire, injury, and/or damage to the equipment. Do not insert fingers or objects into the opening of the product. Otherwise, there is a risk of fire, electric shock, injury, and/or damage to the equipment. Do not remove the nameplate. We assume no responsibility for remodeling of the product by the customer, which is out of our warranty coverage. Transportation The product must be transported correctly in accordance with its weight. Otherwise, there is a risk of injury and/or malfunction. Do not overload/overstack the product. Otherwise, there is a risk of injury and/or malfunction. Be very cautious during transportation to avoid dropping the product or falling. If the product has an eyebolt, always make sure that there is no looseness before using the eyebolt. However, after installing the product to the machine, never lift the entire machine with an eyebolt. Otherwise, there is a risk of damage to the lifting equipment or injury and/or damage to the equipment due to dropping or falling. Before lifting the product, check the product weight on the nameplate, package, drawings, catalogs, etc. and do not lift the product if it exceeds the rated load of the lifting equipment. Otherwise, there is a risk of damage to the bolt or injury and/or damage to the equipment due to dropping or falling. Installation When handling the product, be careful with its sharp angles/edges. Otherwise, there is a risk of injury. Ensure that the product is securely fixed onto the machine. Otherwise, there is a risk of injury and/or damage to the Do not stand or hang from the product. Otherwise, there is a risk of injury and/or damage to the product. Do not place heavy items on the product. Otherwise, there is a risk of damage. Do not put any object around the product that may prevent air circulation. Otherwise, there is a risk of abnormal overheating of the product due to restricted cooling, which may result in fire or burns. Never put combustible materials around the product. Otherwise, there is a risk of fire. Install an oil pan or other preventive device in oil-sensitive machinery such as food machinery, in case of oil leaks due to malfunctions, service life, etc. Otherwise, there is a risk of product defects due to oil leakage.

$\triangle \bigcirc$	Do not touch the key ways on the end of the shaft or the hollow shaft, etc. with bare hands. Otherwise, there is a risk of injury.
	Confirm the rotational direction before connecting with the application. Incorrect rotational direction may result in injury or damage to the equipment.
Operation	
	If an abnormality occurs, immediately stop the operation. Otherwise, there is a risk of fire, electric shock, and/or injury.
	Do not touch the product during operation or for a while after stopping operation, as its surfaces may become very hot. Otherwise, there is a risk of burns.
$\triangle \bigcirc$	Do not touch the rotating parts of the product. Otherwise, there is a risk of injury.
	Make sure that the surface temperature of the reducer does not exceed 90°C. If the surface temperature exceeds 90°C, cool it with an external fan or heat sink to keep it below 90°C. Otherwise, there is a risk of product malfunction and/or damage to the equipment.
	Ensure that the product is securely installed to the machine before operating. Sudden acceleration or deceleration without properly installing the product may cause unexpected movement that could result in injury, product malfunction, and/or damage to the application.
<u> </u>	Ensure that the inertial load does not cause vibration to the output shaft during acceleration or deceleration. Vibration may cause product malfunction and/or damage to the machine.

Contents

Introduction •••••••		••••••		2	
Safety Precautions		ons •••••••		3	
Со	ntents	s	••••••		6
1	I	nspec	tion upon Unpacking		9
	1.1	Ch	ecking the Contents of the Packa	age	9
	1.2	Ho	w to Read the Nameplate		10
	1.3	Pai	t Number		11
2	٦	Transp	ortation		13
3	ı	nstalla	tion		14
	3.1	Ins	tallation location		14
	3.2	Ins	tallation orientation		14
	3.3	Ins	tallation procedure		15
	3	3.3.1	Foot Mount/Flange Mount		15
	3	3.3.2	Installation Fixing Bolts		15
4	ľ	Motor I	Mounting		16
	4.1	Мо	tor Mounting Procedure		16
	2	4.1.1	APG Type		16
	4	4.1.2	AFC type		18
	,	112	AC2/AU2/AE2 types		10

5		Connection	on with Application	•••••••••••••••••••••••••••••••••••••••	20
	5.1	Moun	ring transmission part		20
		5.1.1	For direct coupling		20
		5.1.2	For chain, belt, gear engagement, etc.		21
	5.2	Mount	ing and Removing Hollow Bore		22
		5.2.1	Driven shaft length/driven shaft key length	•••••••••••••••••••••••••••••••••••••••	22
		5.2.2	Mounting on driven shaft	•••••••••••••••••••••••••••••••••••••••	22
		5.2.3	Fixing to driven shaft		23
		5.2.4	Removal from hollow bore	•••••••••••••••••••••••••••••••••••••••	25
	5.3	Flang	e Mount	•••••••••••••••••••••••••••••••••••••••	26
	5.4	Moun	ing and Removing Safety Cap	•••••••••••••••••••••••••••••••••••••••	27
		5.4.1	AF3 type 100 W		27
		5.4.2	AF3 type Other than 100 W	•••••••••••••••••••••••••••••••••••••••	27
6		Rotationa	l Direction	•••••••••••••••••••••••••••••••••••••••	28
	6.1	APG ⁻	Гуре	•••••••••••••••••••••••••••••••••••••••	29
	6.2	AFC t	ype	•••••••••••••••••••••••••••••••••••••••	30
	6.3	AG3 T	уре	•••••••••••••••••••••••••••••••••••••••	32
	6.4	AH2 T	уре	••••••	33
	6.5	AF3 ty	/pe (backlash 1 arc min/3 arc min specification)	•••••••••••••••••••••••••••••••••••••••	34
	6.6	AF3 T	ype (low backlash)	•••••••••••••••••••••••••••••••••••••••	36
7		Wiring		•••••••••••••••••••••••••••••••••••••••	38
8		Operation	1	•••••••••••••••••••••••••••••••••••••••	39
	8.1	Check	Before Turning Switch On	•••••••••••••••••••••••••••••••••••••••	39
	8.2	Check	during trial operation		39
	8.3	Check	in Operational Conditions		39
9		Maintena	nce/Inspection/Disposal	•••••••••••••••••••••••••••••••••••••••	40
	9.1	Mainte	enance	•••••••••••••••••••••••••••••••••••••••	40
	9.2	Inspe	ction	•••••••••••••••••••••••••••••••••••••••	40
	9.2	Dispo	sal	•••••••••••••••••••••••••••••••••••••••	41

10	Tro	publeshooting	••••••••••••	42
	10.1	Problems and Countermeasures	•••••••••••••••••••••••••••••••••••••••	42
11	Sto	orage	•••••••••••••••••••••••••••••••••••••••	43
	11.1	Storage Location	•••••••••••••••••••••••••••••••••••••••	43
	11.2	Work During Storage	***************************************	43
	11.3	Usage After Storage	•••••••••••••••••••••••••••••••••••••••	43
42	т	emo and Canditions		44

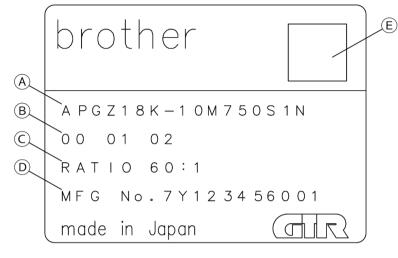
1. Inspection upon Unpacking

Check that the product is right side up when unpacking. Otherwise, there is a risk of injury.

Check that the product is as you ordered. Installing the wrong product may result in injury, damage to the equipment, etc.

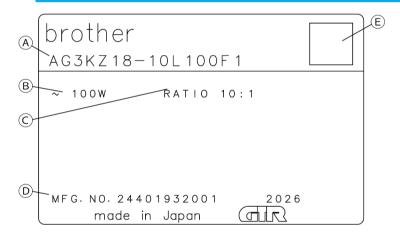
1.1 Checking the Contents of the Package

Check the following items after unpacking.


If there are any defects, or if you have any questions, please contact your nearest service office immediately.

- Does the information on the nameplate completely match your order?
- Is there any damage caused during transportation?
- Are there any loose screws, bolts, or other fastening parts?
- If an accessories list is included in the package, do the accessories match the descriptions in the accessories list?

1.2 How to Read the Nameplate


Typical examples of nameplates are shown below.

APG/AFC types

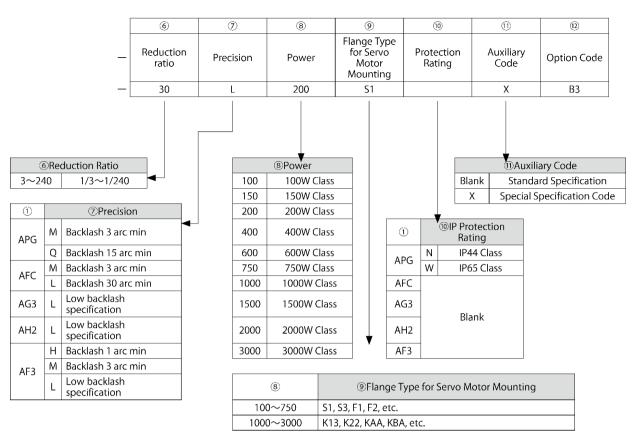
- (A) Part Number
- B Option code
- (C) Reduction ratio
- (D) Manufacturing number (MFG No.)
- © QR code (internal control code)

AG3/AH2/AF3 types

- A Part Number
- B Power
- © Reduction ratio
- (D) Manufacturing number (MFG No.)
- © QR code (internal control code)

- For the meaning of each type code, refer to "Part Number".
- When inquiring, please inform us of the part number/manufacturing number.

1.3 Part Number


Below is information on type codes. Check that the part number is as you ordered.

1	2	3	4	(5)	
Туре	Mount	Motor Type	Frame Size	Shaft Type	_
AH2	L	Z	22	R	-

	①Shaft Type	②Mount		
APG	Concentric Parallel Shaft (Planetary Type)	Blank	Compact Flange	
AFC	Concentric Right Angle Shaft	Diarik	Mount	
	Parallel Shaft	L	Foot Mount	
AG3		F	Flange Mount	
		K	Small Flange Mount	
AH2	Right Angle Shaft	L	Foot Mount	
AF3	Concentric Right	S	Flange Mount	
AFS	Angle Shaft	F	rialige Mourit	

③Motor Type	④Frame Size		
High Precision Reducer for Servo Motor		Output Shaft Diameter	

12	⑤Shaft Type (Parallel Shaft Type)						
APG	К	, , , , , , , , , , , , , , , , , , , ,					
7.11 0	J	Straight shaft					
AG3L AG3F AG3K		Blank					
			⑤Shaft Type	e (Righ	t Angle Shaft Ty	pe	
12	Hollow Bore				Solid Shaft		
AFC	key			ameplate at shaft on the left	-		
		side wher the input	viewed from	side w the inp	hen viewed from out shaft side (↑) vithout a key)		
AH2L	_	Name	Nameplate		Nameplate		
		left si viewed	de when right sid of from the viewed		ut shaft on the ht side when wed from the t shaft side (↑)	Output shaft on both sides when viewed from the input shaft side (↑)	
AF3S	Blank				_		
		1 arc min and 3 arc min specification	Nameplate		Nameplate	Nameplate	
		1 arc min a	Output sha the left si when view from the ir shaft side	ide wed nput	Output shaft o the right side when viewed from the inpu shaft side (↑)	both sides when viewed from the input shaft side	
AF3F	_	specification	Nameplate		Nameplate	Nameplate	
			Low backlash specifi	Output sha the left si when viev from the ir shaft side	ide ved nput	Output shaft o the right side when viewed from the inpu shaft side (↑)	both sides when viewed from the input shaft side

^{*} The type code changes according to the motor that can be mounted. For details, refer to our homepage or catalog.

2. Transportation

DANGER

Never stand under the product when it is lifted for transportation. Otherwise, there is a risk of injury due to falling.

CAUTION

Be very cautious when transporting to avoid dropping the product or any situation that may cause a fall. If the product has an eyebolt, always make sure that there is no looseness before using the eyebolt. However, after installing the product to the machine, never lift the entire machine with an eyebolt. Otherwise, there is a risk of damage to the lifting equipment or injury and/or damage to the equipment due to dropping or falling.

Before lifting the product, check the product weight on the nameplate, package, drawings, catalogs, etc. and do not lift the product if it exceeds the rated load of the lifting equipment. Otherwise, there is a risk of damage to the bolt or injury and/or damage to the equipment due to dropping or falling.

If the package is a wooden box, transport it with belts. Otherwise, there is a risk of injury and/or damage to the product.

3. Installation

The installation quality affects the service life of the product, so pay attention to the following items.

	<u> CAUTION</u>					
$\triangle \bigcirc$	Do not stand or hang from the product. Otherwise, there is a risk of injury and/or damage to the product.					
Λ	Do not place heavy items on the product. Otherwise, there is a risk of damage.					
	Do not put any object around the product that may prevent air circulation. Otherwise, there is a risk of abnormal overheating of the product due to restricted cooling, which may result in fire or burns.					
$\triangle \bigcirc$	Never put combustible materials around the product. Otherwise, there is a risk of fire.					
1	Install an oil pan or other preventive device in oil-sensitive machinery such as food machinery, in case of oil leaks due to malfunctions, service life, etc. Otherwise, there is a risk of product defects due to oil leakage.					
$\triangle \Diamond$	Do not touch the key ways on the end of the shaft or the hollow shaft, etc. with bare hands. Otherwise, there is a risk of injury.					
1	The vibration applied from the product installation surface or the outside should be less than the specified value.					

3.1 Installation Location

Ambient temperature	0°C to 40°C
Ambient humidity	85% RH max. (no condensation)
Altitude	1,000 m max.
Vibration resistance	0.5 G max.
Atmosphere	Well-ventilated place free from corrosive gas, explosive gas, vapor, chemicals, etc. Well-ventilated place with no dust No direct exposure to rain or water No direct exposure to sunlight

3.2 Installation Orientation

All models adopt a grease lubrication method and can therefore be installed in any orientation.

3.3 Installation Procedure

3.3.1 Foot Mount/Flange Mount

- Fasten the product to a vibration-free, machined, flat surface using four bolts.
- Make sure the flatness of the mounting surface is 0.1 mm or below.

Important: If the foundation is improper or the mounting surface is not flat enough, vibration may occur during operation and the service life of the reducer may be shortened.

3.3.2 Installation Fixing Bolts

For the bolt size and the tightening torque, refer to the following tables.

AG3/AH2/AF3 types

(Reference value)

Mounting hole	Bolt size	Strength classification Tightening torqu	
[mm]		(JIS B 1051)	[N•m]
9	M8	4.8	13
11	M10	4.8	25
13	M12	4.8	44
15	M14	4.8	69
18	M16	4.8	108
22	M20	6.8	294

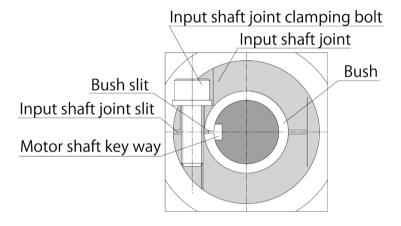
APG/AFC types

(Reference value)

Mounting hole	Bolt size	Strength classification Tightening torqu	
[mm]		(JIS B 1051)	[N•m]
5.5	M5	10.9	8.3
6.5	M6	10.9	14.2
9	M8	10.9	29.4
11	M10	10.9	65.8

4. Motor Mounting

4.1 Motor Mounting Procedure


4.1.1 APG type

- Step 1. Turn the input shaft joint and align the input shaft joint clamping bolt head to the wrench hole for input shaft joint clamping on top of the flange.
- Step 2. Wipe rust-preventive agent, oil, etc., off the input shaft joint guide part and the motor output shaft.
- Step 3. Insert the motor into the reducer body.

When a bush is provided, align the position of the bush slit with that of the input shaft joint slit as shown in the following figure. Additionally, when a key way is provided in the motor shaft, align the position of the bush slit with the key way.

For a reducer of IP65 specifications, before inserting the motor into the reducer body,

put a sheet gasket (accessory) between the reducer flange and the motor.

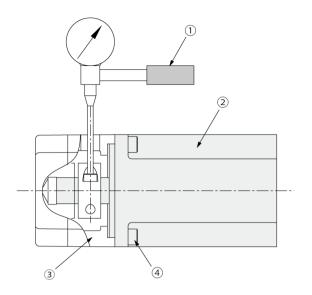
Step 4. Fasten the motor and the reducer flange part with a motor mounting bolt.

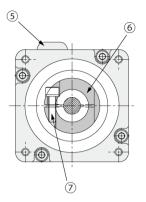
Refer to [Table 1] for the tightening torque value.

Step 5. Tighten the input shaft joint clamping bolt to the specified tightening torque.

Refer to [Table 2] for the tightening torque value.

Step 6. Mount the rubber cap (accessory) to the wrench hole for input shaft joint clamping.

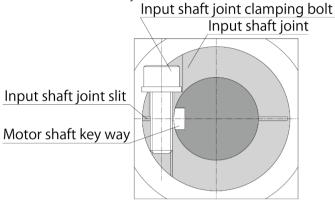

[Table 1] Tightening torque for motor mounting bolt


(Reference value)

1 3 4 3 4 4 4				,	
Bolt size	М3	M4	M5	M6	M8
Tightening torque [N•m]	1.6	4.4	8.3	14.2	29.4
Strength classification (JIS B 1051)	10.9	10.9	10.9	10.9	10.9

[Table 2] Tightening torque for input shaft joint clamping bolt (Reference value)

Power class	100W 150W 200W 400W	600W 750W	1000W 1500W 2000W 3000W
Bolt size	M4	M5	M8
Tightening torque [N•m]	5.1	9	35


- 1 Torque wrench
- 2 Motor
- 3 Flange
- 4 Motor mounting bolt
- Wrench hole for input shaft joint clamping (Rubber cap - accessory)
- ⑥ Input shaft joint
- ⑦ Input shaft joint clamping bolt

CAUTION: Do not tighten the input shaft joint clamping bolt while the motor shaft is not inserted into the input shaft joint.

Otherwise, there is a risk of damage to the input shaft.

4.1.2 AFC type

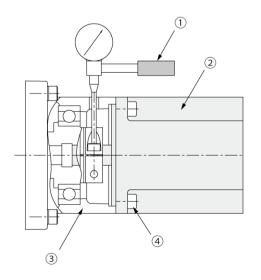
- Step 1. Turn the input shaft joint and align the input shaft joint clamping bolt head to the wrench hole for input shaft joint clamping on top of the flange.
- Step 2. Wipe rust-preventive agent, oil, etc., off the input shaft joint guide part and the motor output shaft.
- Step 3. Insert the motor into the reducer body.

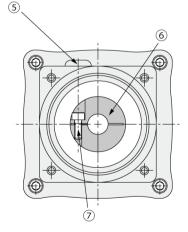
Step 4. Fasten the motor and the reducer flange part with a motor mounting bolt.

Refer to [Table 3] for the tightening torque value.

- Step 5. Tighten the input shaft joint clamping bolt to the specified tightening torque.

 Refer to [Table 4] for the tightening torque value.
- Step 6. Mount the rubber cap (accessory) to the wrench hole for input shaft joint clamping.

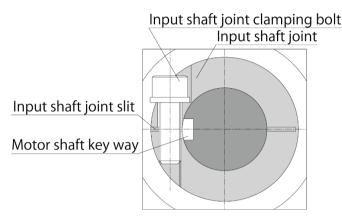

[Table 3] Tightening torque for motor mounting bolt


(Reference value)

Bolt size	M3	M4	M5	M6	M8
Tightening torque [N•m]	1.6	4.4	8.3	14.2	29.4
Strength classification (JIS B 1051)	10.9	10.9	10.9	10.9	10.9

[Table 4] Tightening torque for input shaft joint clamping bolt (Reference value)

Power class	100W 200W 400W	750W	1000W 2000W 3000W
Bolt size	M4	M5	M8
Tightening torque [N•m]	5.1	9	35


- 1 Torque wrench
- 2 Motor
- 3 Flange
- 4 Motor mounting bolt
- (Rubber cap accessory)
- ⑥ Input shaft joint
- Input shaft joint clamping bolt

CAUTION: Do not tighten the input shaft joint clamping bolt while the motor shaft is not inserted into the input shaft joint.

Otherwise, there is a risk of damage to the input shaft.

4.1.3 AG3/AH2/AF3 types

- Step 1. Turn the input shaft joint and align the input shaft joint clamping bolt head to the wrench hole for input shaft joint clamping on top of the flange.
- Step 2. Wipe rust-preventive agent, oil, etc., off the input shaft joint guide part and the motor output shaft.
- Step 3. Insert the motor into the reducer body.

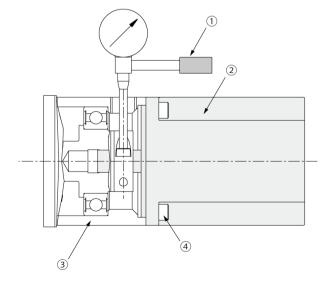
Step 4. Fasten the motor and the reducer flange part with a motor mounting bolt.

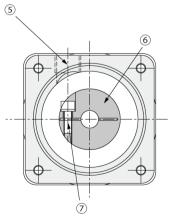
Refer to [Table 5] for the tightening torque value.

Step 5. Tighten the input shaft joint clamping bolt to the specified tightening torque.

Refer to [Table 6] for the tightening torque value.

Step 6. Mount the accessory cap screw (rubber bush) to the wrench hole for input shaft joint clamping.


[Table 5] Tightening torque for motor mounting bolt


(Reference value)

Bolt size	М3	M4	M5	M6	M8
Tightening torque [N•m]	1.6	4.4	8.3	14.2	29.4
Strength classification (JIS B 1051)	10.9	10.9	10.9	10.9	10.9

[Table 6] Tightening torque for input shaft joint clamping bolt (Reference value)

Power class	100W 200W 400W	750W	1000W 2000W
Bolt size	M5	M6	M8
Tightening torque [N•m]	8.3	12.7	29.4

- 1 Torque wrench
- ② Motor
- 3 Flange
- 4 Motor mounting bolt
- (S) Wrench hole for input shaft joint clamping (Cap screw (rubber cap) accessory)
- 6 Input shaft joint
- ① Input shaft joint clamping bolt

CAUTION: Do not tighten the input shaft joint clamping bolt while the motor shaft is not inserted into the input shaft joint.

Otherwise, there is a risk of damage to the input shaft.

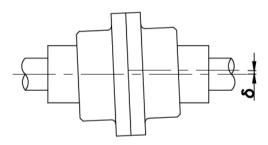
5. Connection with Application

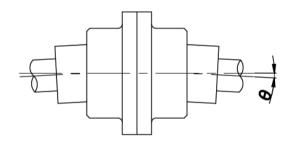
If the product is connected to a load, pay attention to centering, belt tension, pulley parallelism, etc. For belt tension, adjust the belt tension properly. For direct coupling, align the shaft core of the product rotating shaft with that of the application. Also, before operation, be sure to fasten the tightening bolts of the pulley and the coupling.

<u>^</u>

Provide a cover, etc. to prevent the rotating parts from being touched. Otherwise, there is a risk of injury.

Otherwise, there is a risk of injury or damage to the equipment due to scattering of fragments.

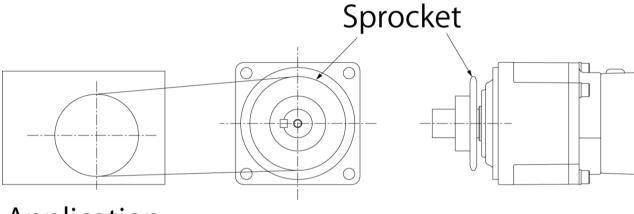

5.1 Mounting Transmission Part


- H7 fit is recommended when mounting a connector (coupling, sprocket, pulley, gear, etc.) on the rotating shaft.
- When assembling the connector, be sure to use the designated key material.

5.1.1 For direct coupling

Align the shaft core of the product rotating shaft with that of the application.

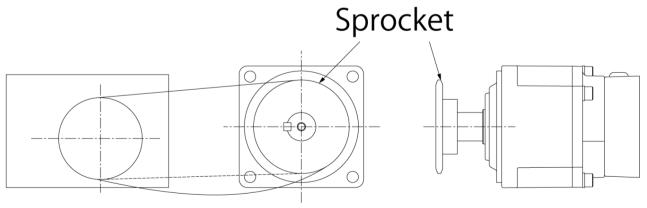
Example of gear coupling


• The displacement δ or θ differs depending on the type of coupling; keep it within the allowable value of the coupling manufacturer. Reference: For chain couplings: δ = 2% of roller chain pitch, θ = within 1°

5.1.2 For chain, belt, gear engagement, etc.

- Place the shaft core of the product rotating shaft in parallel with that of the application.
- The chain or belt tension and the gear engagement must be perpendicular to the shaft core.
- If the load acts on the end of the rotating shaft, excessive force will be applied to the rotating shaft, causing the case to split, etc. Put the sprocket, pulley, gear, etc. up to the base of the shaft so that the load point is as close to the product as possible.
- Excessive belt tension will damage the bearing.
- Excessive chain tension will damage the bearing. Very loose tension will generate large impact force upon startup, adversely affecting the product and the application, so make proper adjustments.

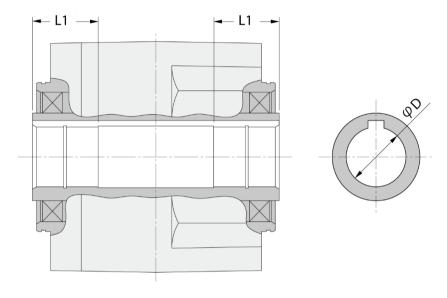
Proper usage


- The tension of the belt/chain is appropriate.
- The position of the pulley/sprocket is appropriate.

Application

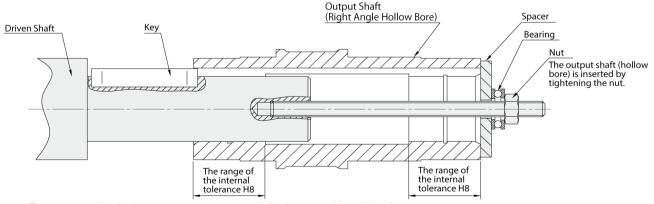
Improper usage

- Chain too loose
- Reverse orientation of the sprocket and the load point at the shaft end


Application

5.2 Mounting and Removing Hollow Bore

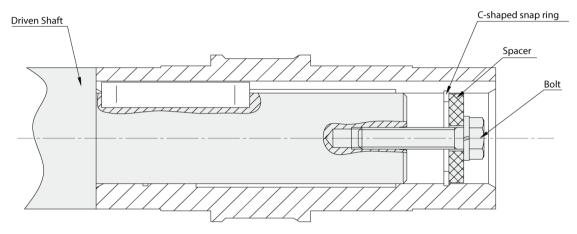
5.2.1 Driven shaft length/driven shaft key length


- Arrange the driven shaft to reach both ends of the L1 area. However, allow for some margin for the spacer dimensions required during "Removal from hollow bore".
- Set the length of the key to at least 1.5 times hole diameter D of the hollow bore.

In addition, adjust the key insertion position so that at least 1/2 of the overall length of the key is engaged with L1. Engagement on both sides of the two L1 areas is not required.

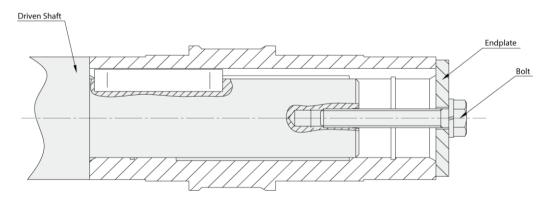
5.2.2 Mounting on driven shaft

- Apply an anti-seizing agent (molybdenum disulfide, etc.) suitable for the usage environment to the surface of the driven shaft and the
 internal diameter of the hollow bore, and then insert the reducer into the driven shaft.
- The internal diameter of the hollow bore is designed to have a tolerance of H8.
 When no impact is imposed under uniform load, the recommended tolerance for the driven shaft is h7.
 If impact load is imposed or radial load is high, tighten the fit.
- If the fit is tight, insert the hollow bore output shaft by tapping its end face with a plastic hammer.
 In this case, be sure not to hit the casing. Make a jig as shown in the diagram below to insert the shaft smoothly.
- It is recommended to arrange the length of the driven shaft and the detent key so as to reach the range of the internal diameter tolerance H8 on the fixing side.
- It is recommended to adjust the axial runout of the driven shaft to 0.05 mm or less at the end of the shaft.
 If the axial runout increases during operation, it may adversely affect the product.


The customer is asked to prepare spacers, nuts, bolts, key material, and bearings.

5.2.3 Fixing to driven shaft

When the driven shaft is stepped

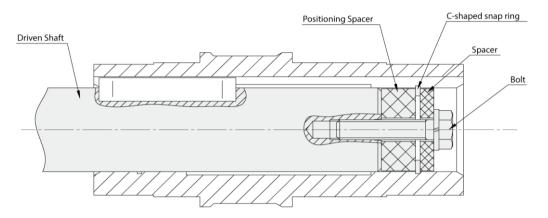

Fixing using a spacer and a C-type retaining ring

Important: Note that the C-type retaining ring may deform if the bolt is tightened excessively.

The customer is asked to prepare the spacer, bolts, and C-type retaining ring.

Fixing using an endplate

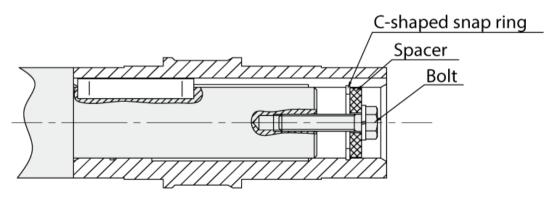
The customer is asked to prepare the endplate and bolts.


Fixing using a spacer and a C-type retaining ring

Important: Be sure to allow a gap between the outer diameter of the spacer and the internal diameter of the hollow bore.

If the fit is tight or the outer diameter of the spacer is inaccurate, the axial runout of the driven shaft and hollow bore may increase.

Use a positioning spacer to position the product. This is not required if the length of the driven shaft is secured in advance. In addition, attaching a positioning spacer makes it possible to remove the shaft smoothly from the hollow bore.


For removal from the hollow bore, refer to "Removal from hollow bore".

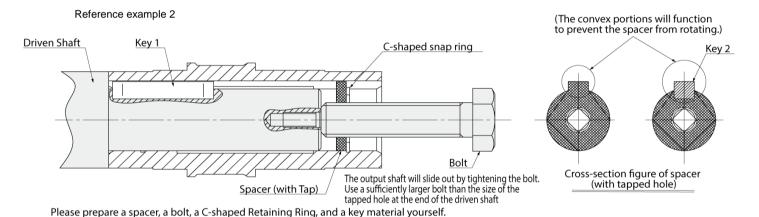
The customer is asked to prepare the spacer, positioning spacer, bolts, and C-type retaining ring.

Recommended sizes for the driven shaft fixing parts

Design the tightening of hollow bore types for general applications by referring to the dimensions shown in the following table to ensure strength.

Internal diameter of hollow bore	Bolt size	Spacer dimension [mm]			Nominal size of C-type
[mm]	DOIL SIZE	Outer diameter	Internal diameter	Width	retaining ring for hole
φ20	M6	φ19.5	φ7	3	20
φ25	M6	φ24.5	φ7	4	25
φ30	M8	φ29.5	φ9	5	30
φ35	M10	φ34.5	φ11	5	35
φ45	M10	φ44.5	φ11	5	45
φ50	M12	φ49.5	φ13	6	50
φ55	M12	φ54.5	φ13	6	55

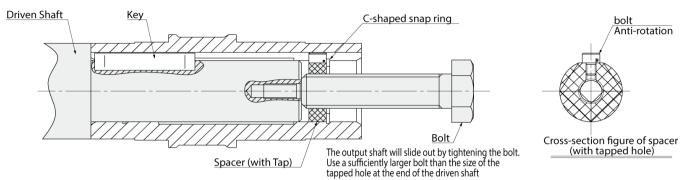
5.2.4 Removal from hollow bore


Take care not to impose unnecessary force between the casing and the hollow bore when removing the driven shaft. Make and use a jig as shown in the figure below to remove the shaft smoothly.

Reference example 1 (The convex portions will function **Round Plate** to prevent the spacer from rotating.) Driven Shaft Key 1 C-shaped snap ring Key 2 Bolt Cross-section figure of spacer (with tapped hole) The output shaft will

slide out by tightening the bolt.

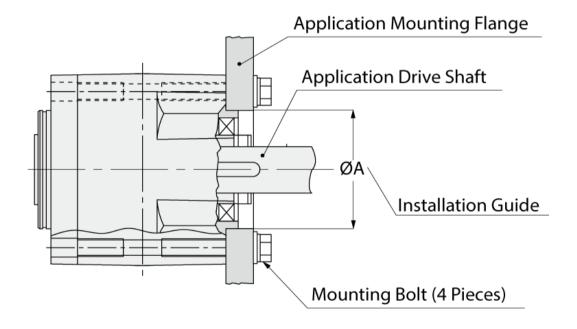
Please prepare a spacer, a round plate, a bolt, a retaining ring, and a key yourself.


Spacer (with Tap)

Reference example 3 (The convex portions will function to prevent the spacer from rotating.) **Driven Shaft** Key 1 C-shaped snap ring Bolt 1 Key 2 Bolt 2 Cross-section figure of spacer The output shaft will (with tapped hole) slide out by tightening the bolt. Spacer (with Tap)

Please prepare a spacer, a bolt, a C-shaped Retaining Ring, and a key material yourself.

Reference example 4

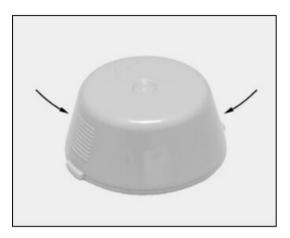


Please prepare a spacer, a bolt, a C-shaped Retaining Ring, and a key material yourself.

5.3 Flange Mount

- When mounting directly on the application installation flange surface, be sure to perform centering.
 Misalignment at the center may cause motor seizing or bearing damage.
- If the product has an installation guide, use four mounting bolts and mount as shown in the following figure.

 The dimensional tolerance for ØA for the installation guide is h7.



5.4 Mounting and Removing Safety Cap

After mounting the application driven shaft, mount the accessory safety cap.

5.4.1 AF3 type 100 W

Mount and remove the safety cap by lightly pushing the part indicated by the arrow. Do not push hard. Otherwise, there is a risk of damage.

5.4.2 AF3 type other than 100 W

Insert a tapered bar, etc. into the three gaps on the side face of the safety cap to remove the safety cap. Wrap the tip of the bar in cloth, etc. to prevent the safety cap from being damaged.

6. Rotational Direction

CAUTION

Confirm the rotational direction before connecting with the application. Incorrect rotational direction may result in injury or damage to the equipment.

The relationship between the rotational direction of the input shaft and that of the output shaft is as follows:

6.1 APG Type

Motor power class	Reduction ratio
100W	1/3, 1/5, 1/10, 1/15, 1/20, 1/30, 1/40, 1/50, 1/60, 1/100
150W	1/3, 1/5, 1/10, 1/15, 1/20, 1/30, 1/40, 1/50, 1/60
200W	1/3, 1/5, 1/10, 1/15, 1/20, 1/30, 1/40, 1/50, 1/60, 1/100
400W	1/3, 1/5, 1/10, 1/15, 1/20, 1/30, 1/40, 1/50, 1/60, 1/100
600W	1/3, 1/5, 1/10, 1/15, 1/20, 1/30, 1/40, 1/50, 1/60
750W	1/3, 1/5, 1/10, 1/15, 1/20, 1/30, 1/40, 1/50, 1/60
1000W	1/3, 1/5, 1/10, 1/15, 1/20, 1/30, 1/40, 1/50
1500W	1/3, 1/5, 1/10, 1/15, 1/20, 1/30
2000W	1/3, 1/5, 1/10, 1/15, 1/20
3000W	1/3, 1/5, 1/10
Rotational direction of output shaft	

^{*}The rotational direction of the APG type output shaft is the same as that of the motor input for all reduction ratios.

6.2 AFC Type

Motor power class	Reduction ratio
100W	1/7.5, 1/10*
200W	1/5, 1/7.5, *1/10
400W	1/3, 1/5, 1/7.5, *1/10
750W	1/3, 1/5, 1/7.5, *1/10
1000W	1/3, 1/5, 1/7.5, *1/10
2000W	1/3, 1/5, 1/7.5, 1/10
3000W	1/3, 1/5
Rotational direction of output shaft	

*For the frame size (output shaft diameter) of the 1/10 reduction ratio, see the following table.

Motor power class	Frame size (output shaft diameter)
100W	Ф12
200W	Ф15
400W	Ф18
750W	Ф22
1000W	Ф28

Motor power class	Reduction ratio
100W	1/10*, 1/12, 1/15, 1/20, 1/25, 1/30, 1/40, 1/50, 1/60
200W	* 1/10, 1/12, 1/15, 1/20, 1/25, 1/30, 1/40, 1/50, 1/60
400W	* 1/10, 1/12, 1/15, 1/20, 1/25, 1/30, 1/40, 1/50, 1/60
750W	* 1/10, 1/12, 1/15, 1/20, 1/25, 1/30, 1/40, 1/50, 1/60
1000W	* 1/10, 1/12, 1/15, 1/20, 1/25, 1/30
2000W	-
3000W	-
Rotational direction of output shaft	

*For the frame size (output shaft diameter) of the 1/10 reduction ratio, see the following table.

Motor power class	Frame size (output shaft diameter)
100W	Ф15
200W	Ф18
400W	Ф22
750W	Ф28
1000W	Ф32

6.3 AG3 Type

Motor power class	Reduction ratio
100W	1/5, 1/10, 1/15, 1/20, 1/25, 1/30, 1/40, 1/50
200W	1/5, 1/10, 1/15, 1/20, 1/25, 1/30
400W	1/5, 1/10, 1/15, 1/20, 1/25, 1/30
750W	1/5, 1/10, 1/15, 1/20, 1/25, 1/30
2000W	1/5, 1/10, 1/15, 1/20, 1/25, 1/30
Rotational direction of output shaft	

Motor power class	Reduction ratio
100W	1/60, 1/80, 1,100, 1/120, 1/160, 1/200
200W	1/40, 1/50, 1/60, 1/80, 1,100, 1/120, 1/160, 1/200
400W	1/40, 1/50, 1/60, 1/80, 1,100, 1/120, 1/160, 1/200
750W	1/40, 1/50, 1/60, 1/80, 1,100, 1/120, 1/160, 1/200
2000W	1/40, 1/50, 1/60, 1/80, 1,100, 1/120, 1/160, 1/200
Rotational direction of output shaft	

6.4 AH2 Type

Motor power class	Reduction ratio
100W	1/5, 1/10, 1/15, 1/20, 1/25, 1/30, 1/40, 1/50, 1/60
200W	1/5, 1/10, 1/15, 1/20, 1/25, 1/30, 1/40, 1/50, 1/60
400W	1/5, 1/10, 1/15, 1/20, 1/25, 1/30, 1/40, 1/50, 1/60
750W	1/5, 1/10, 1/15, 1/20, 1/25, 1/30, 1/40, 1/50, 1/60
2000W	1/5, 1/10, 1/15, 1/20, 1/25, 1/30
Rotational direction of output shaft	L R T

Motor power class	Reduction ratio
100W	1/80, 1,100, 1/120, 1/160, 1/200, 1/240
200W	1/80, 1,100, 1/120, 1/160, 1/200, 1/240
400W	1/80, 1,100, 1/120, 1/160, 1/200, 1/240
750W	1/80, 1,100, 1/120, 1/160, 1/200, 1/240
2000W	1/40, 1/50, 1/60, 1/80, 1/100, 1/120, 1/160, 1/200, 1/240
Rotational direction of output shaft	L R T

6.5 AF3 Type (backlash 1 arc min/3 arc min specification)

Motor power class	Reduction ratio
100W	1/75, 1/90, 1/120
200W	1/10, 1/15, 1/20, 1/25, 1/30, 1/40, 1/50, 1/60
400W	1/10, 1/15, 1/20, 1/25, 1/30, 1/40, 1/50, 1/60
750W	1/10, 1/15, 1/20, 1/25, 1/30, 1/40, 1/50, 1/60
1000W	1/10, 1/20, 1/30, 1/40, 1/50, 1/60
2000W	1/10, 1/20, 1/30, 1/40, 1/50, 1/60
Rotational direction of output shaft	H M F

Motor power class	Reduction ratio
100W	1/10, 1/15, 1/20, 1/25, 1/30, 1/40, 1/50, 1/60
200W	1/75, 1/90, 1/120, 1/150, 1/180
400W	1/75, 1/90, 1/120, 1/150, 1/180
750W	1/75, 1/90, 1/120, 1/150, 1/180
1000W	-
2000W	-
Rotational direction of output shaft	H M F

6.6 AF3 Type (low backlash)

Motor power class	Reduction ratio
100W	1/10, 1/15, 1/20, 1/25, 1/30, 1/40, 1/50, 1/60
200W	1/10, 1/15, 1/20, 1/25, 1/30, 1/40, 1/50, 1/60
400W	1/5, 1/7.5, 1/10, 1/12, 1/15, 1/20, 1/25, 1/30, 1/40, 1/50, 1/60
750W	1/5, 1/7.5, 1/10, 1/12, 1/15, 1/20, 1/25, 1/30, 1/40, 1/50, 1/60
2000W	1/5, 1/7.5, 1/10, 1/12, 1/15, 1/20, 1/25, 1/30, 1/40, 1/50, 1/60
Rotational direction of output shaft	H M F

Motor power class	Reduction ratio
100W	1/80, 1/100, 1/120, 1/160, 1/200, 1/240
200W	1/80, 1/100, 1/120, 1/160, 1/200, 1/240
400W	1/80, 1/100, 1/120, 1/160, 1/200, 1/240
750W	1/80, 1/100, 1/120, 1/160, 1/200, 1/240
2000W	-
Rotational direction of output shaft	H M F

7. Wiring

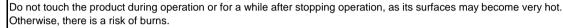
CAUTION

Confirm the rotational direction before connecting with the application. Incorrect rotational direction may result in injury or damage to the equipment.

8. Operation

DANGER

Never approach or touch the product while it is rotating. Otherwise, there is a risk of injury due to entanglement.


CAUTION

If an abnormality occurs, immediately stop the operation. Otherwise, there is a risk of fire, electric shock, and/or injury.

Do not apply load exceeding the rated load during operation. Otherwise, there is a risk of injury or damage to the equipment.

8.1 Check Before Operation

Check the following items before operation.

- The product is correctly connected to the application.
- The product is correctly installed.

8.2 Check During Trial Operation

Check the following items during trial operation.

- Before connection with the application, turn on the switch for one to two seconds without load and check the rotational direction.
- First, perform running-in without load. If there is no abnormality, increase the load gradually and enter full-load operation.

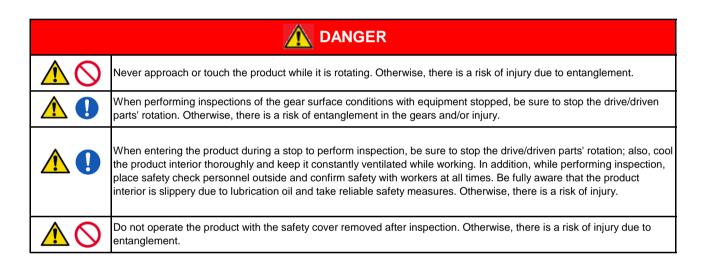
8.3 Check in Operational Conditions

Refer to the contents of "Inspection" and check the operational conditions.

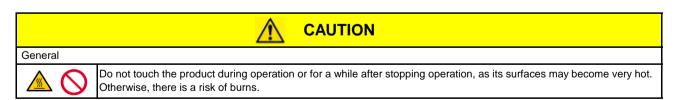
CAUTION: If there is any abnormality, stop operation immediately. Otherwise, there is a risk of fire, electric shock, burns, injury, and/or damage to the product.

Do not re-start operation until the causes of the abnormality are determined and countermeasures are taken.

Reference: For diagnosis should an abnormality occur, refer to "Troubleshooting", etc.


9. Maintenance/Inspection/Disposal

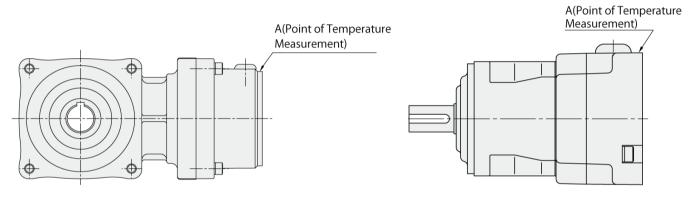
9.1 Maintenance


- All models use a grease lubrication system; they do not need grease replacement/replenishment.
- The product is designed for 10,000 hours of operation.
- Though the oil seals, etc. should prevent grease leakage, it is highly recommended to apply protection such as oil pans just in case.

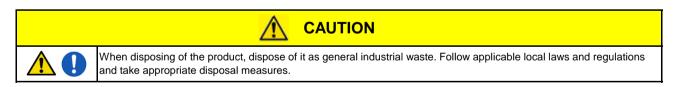
 Oil leakage may cause product failure. (There is a risk of grease leakage during product failure or at the end of product life.)
- The service life of oil seals varies depending on the conditions of use, so that replacement may be required even before the 10,000 hours of usage.
 - Note that the replacement must be performed at our factory.
- The precision (backlash) life varies depending on the conditions of use.

9.2 Inspection

Based on 8 hours/day operation.


Perform periodic inspections according to the inspection interval guidelines.

(Determine the optimal timing for inspections based on the conditions and usage environment.)


Inspection item	Inspection interval guidelines	Inspection contents	
Noise	2 to 3 days	No abnormal noise (rattling, periodic noise)	
		No increase from the normal level	
		Reference: Apply a listening rod to the bearing part to check for abnormal noise	
Vibration	2 to 3 days	No abnormal vibration	
		No increase from the normal level	
Surface temperature	2 to 3 days	At or below 90℃	
		No rapid increase or decrease from the normal temperatures	
Grease leakage	2 to 3 days	No leakage from the oil seals or case joint parts	
Installation	6 months	No loose screws mounting the product onto the application	
Connection with Application	6 months	No loose connection between the product and its load	
		Chain and belt tension	
		No core displacement	

* Take care to maintain the surface temperature (area A) at or below 90°C.

If the surface temperature exceeds 90°C, cool it with an external fan or heat sink to keep it below 90°C.

9.3 Disposal

10. Troubleshooting

10.1 Problems and Countermeasures

If an abnormality occurs in the product, refer to the following table and take measures.

Problem	Cause	Countermeasures
	Damage to gears, shafts, or bearings	Repair at our plant
No rotation without load	Loose input shaft joint clamping bolt	Retightening
	Insufficient motor power	Re-selection of motor
	Motor failure	Replacement of motor
	Motor setting or wiring failure	Review of setting and wiring
	Wear on gears	Repair at our plant
	Overload operation	Lowering load
No rotation with load	Insufficient motor power	Re-selection of motor
No rotation with load	Motor failure	Replacement of motor
	Motor setting or wiring failure	Review of setting and wiring
	Inappropriate motor gain	Reference to motor instruction manual
	Damage to gears, shafts, or bearings	Repair at our plant
	Overload operation	Lowering load
	Installation failure, loose bolts	Centering and/or bolt retightening
Abnormal heat generation	High start/stop frequency	Reducing frequency
Abrioffial fleat generation	Motor heat generation (when motor torque is too high compared to load torque)	Rechecking assembly procedure
	Motor heat generation (when load torque is too high)	Lowering load
	Input speed too fast	Reducing rotation speed
	Continuous noise - Damage to bearings or wear on gears	Repair at our plant
Abnormal noise	Intermittent noise - Scratches on gears or engagement with foreign matter	Repair at our plant
	Installation failure, loose bolts	Centering and/or bolt retightening
	Motor driving noise or electromagnetic noise	Reference to motor instruction manual
	Wear on gears or bearings	Repair at our plant
Large vibration	Installation failure, loose bolts	Centering and/or bolt retightening
	Inappropriate motor gain	Reference to motor instruction manual
Grease leakage	Oil seal damage	Repair at our plant

11. Storage

When storing the purchased product temporarily or for a long time, pay attention to the following points.

11.1 Storage Location

- If storing the product, store it indoors in a dry location with good ventilation and no direct sunlight, extreme temperature changes, humidity, dust, or corrosive gases, etc.
- Never place the product directly on the ground when it is stored.
- Micro-vibrations may damage the bearings due to fretting corrosion even when the product is stored. Store the product in a place free of vibration.

11.2 Work During Storage

- To prevent the bearings from getting rusty, operate the product every six months to check that it rotates smoothly without abnormal noise.
- Apply rust prevention to the rotating shafts, flange surface, and any other uncoated machined surfaces every six months.

11.3 Usage After Storage

• Check that there is no abnormal noise, vibration, heat generation or other abnormalities during initial operation.

12. Terms and Conditions

Full Terms and Conditions can be found at the link below.

www.brother-usa.com/GM-terms-conditions

Brother International Corporation Gearmotor Division

200 Crossing Blvd. Bridgewater, NJ 08807 Phone: 866-523-6283 | Fax: 908-704-8235

www.BrotherGearmotors.com
E-mail: GearMotors@brother.com

2025/9

Ver.1.0